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 Abstract – We describe in detail the behavior of an 
inhibitory Central Pattern Generator (CPG) network for robot 
control. A four-neuron, mutual inhibitory network forms the 
basic coordinating pattern for locomotion. This network then 
inhibits an eight-neuron network used to drive patterned 
movement. We show that we can get predictable control of 
important relationships such as the phase of the hip and the 
knee by adjusting tonic parameters. We demonstrate the basic 
concept both in a simulation that is used to drive a trotting 
bipedal robot as well as an aVLSI CPG chip that generates 
spiking burst patterns.  Our results indicate that an inhibitory 
framework can generate simple, understandable and flexible 
networks for legged robot control that can be implemented in 
custom VLSI circuits. 
 
 Index Terms – Central Pattern Generator, Silicon CPG, 
Bipedal Locomotion, Walking Machines, Biologically Inspired 
Systems  
 

I.  INTRODUCTION 

 CPGs are an attractive means of controlling legged 
robots because 

• They can be implemented in custom VLSI 
hardware allowing a compact, low power and 
elegant controller [1-9]  

• They are compatible with a dynamic systems 
approach to robot control which may result in 
more compact and mechanically efficient 
movements; 

• Movement and perception seem tightly coupled. 
If we hope to import other biologically inspired 
aspects of intelligence, we should consider 
building a movement based system that is 
biologically motivated. 

The drawback of using CPGs is that the mathematical 
tools for the systematic design of such networks, necessary 
to meet specific engineering requirements, have not been 
worked out. Softcomputing methods such as genetic 
algorithms have been applied in the past to the design of 
such circuits [10].   Simplified models of CPGs have been 
designed using Phase oscillators that are amenable to 
mathematical analysis [11-13].  

Our work here concerns building networks using 
spiking neurons. Spiking neurons are attractive because they 
more closely reflect biological neurons, and may be more 
compatible with biomedical applications such as 
neuroprostheses.  
 While the biological literature describes the behavior of 
networks, it does not prescribe a design. We have 
discovered a particularly simple network based on 

inhibitory connections that allow reasonably predictable 
designs of neural central pattern generators.  

The core idea we start with is that of a classic half-
centered oscillator [14]. The half-centered oscillator is 
composed of two neurons that have mutual inhibition. These 
networks can enforce 180° phase difference between neural 
outputs. 

By modulating a tonic drive to this network we can 
speed up the network, slow it down, cause it to go into a 
“tenus” phase where both neurons are excited, or shut it off 
completely.  

Next, we use the output of the half-centered oscillator 
to inhibit a network of motor neurons. This is in contrast to 
the use of an oscillator network to excite a motor neuron 
network. The advantage of this approach is that when 
inhibition is removed, the nominal firing rate of the motor 
neuron is controlled by a descending tonic drive.  The 
inhibition pushes the neuron until it is hyperpolarized. The 
depth of this hyperpolarization causes the motor neuron to 
shut off. The time it takes to turn back on depends on the 
depth of hyperpolarization, which can introduce a phase 
delay between the release of inhibition and the turn on of 
the motor neuron.  This can be overcome to some extent via 
an increased tonic drive. 

We next turn to the details of the neural model that we 
used. We have implemented this model in software as well 
as in an analog Very Large Scale Integration (aVLSI) 
circuit.  We present results in both software and the control 
of a fast moving biped as well as results in creating 
appropriate waveforms using the CPG chip. 

Figure 1. Model of neuron used to construct the motor control 
network that controls the RedBot Robot. 



II. Neural Model Used in Simulation Studies 
The neural model is multicompartmental, as shown in 

Figure 1. For the sake of clarity, some of the details are 
omitted from the system diagram depicted. The exact 
equations are given by: 
 

ατ •−•−+•−+−= −−++ fbSynVVSynVVvV
dt
d

memmemmemmemmem )()(

  (1) 
),0max( memVu =   (2) 

∑ ++ = iSSyn   (3) 

∑ −− = iSSyn   (4) 

iiiisyn uwSS
dt
d

•+−= −−τ  (5) 

iiiisyn uwSS
dt
d

•+−= ++τ  (6) 

ufb
dt
d

=  (7) 

where  
memτ   =500 ms, the cell membrane time constant   

synτ    =100 ms, the synapse time constant 

memV   the cell membrane voltage 
−+ VV ,  the positive  and negative voltage drives. 

In the simulations described here, Euler integration was 
used with  a time-step of 20 ms. 

III. Results 

A. Effect of self-inhibitory term 
The effect of the self-inhibitory feedback is illustrated in 
Figure 2.  The tonic drive is switched on three times during 
the time course of this experiment at t=[10,15], t=[20,25] 
and t=[30,35], and it results in changes in membrane 
voltage. 

In particular, during the first burst of activity, there is 
no self-inhibitory contribution, i.e.: α=0. Here, the 
membrane voltage exhibits an exponential 
charging/discharging as would be expected. 

During the second burst of activity we set α =10. In 
this case, the cell membrane voltage rises sharply as before, 
but then reduces and finally achieves a steady state rate. 

During the third burst of activity, we set α =100.  
Qualitatively, the response is similar to the second burst of 
activity. However, the steady state response is further 
reduced and, more significantly, the time course of the 
response is compressed. The cell therefore “switches off” 
more quickly in the case of a stronger feedback 
contribution. 

B. Coupling two neurons to create a half-centered oscillator 
The next step consists in building a two cell CPG 

circuit. This is done by coupling two neurons together and 
driving inhibitory synapses. The self inhibitory feedback 
term was set to 20. Referring to Figure 3, the drive force 
was varied as follows: drive = 0.1 for t=[5.0,10.0), drive = 
0.5 for t=[10.0,15.0), drive = 1.0 for t=[15.0,20.0), drive = 2 
for t=[20.0,25.0), drive = 5 for t=[25.0,30.0), drive = 10 for 
t=[30.0,35.0). In all, the drive was varied by two orders of 
magnitude.  

As can be seen, the firing rates of the two cells oscillate 
180° out of phase with each other. We also note that the 
greater the driving force, the greater the amplitude of the 
output. The output frequency, however, does not change 
until the drive rate becomes very high and the neurons begin 
to stay switched on. 

Clearly, then, we can conclude that the consequence of 
an increase in the tonic drive is an increase in the magnitude 
of the CPG’s output. 

C. Effect of altering the self-inhibitory term 
In Figure 4, we examine the effect of changing the self 

inhibitory feedback term. The term varies from a value of  
15 for t=[5.0,10.0),  to 20 for t=[10.0,15.0),  to 30 for 
t=[15.0,20.0),  to 40 for t=[20.0,25.0),  to 50 for t=[25.0, 
30.0). 

As can be seen, the effect of altering this feedback term 
is an increase in the frequency of the oscillation. In addition, 
there is a minor decrease in the amplitude of the response, 
similar to the increase found as consequence of a stronger 
tonic drive. 

Figure 2. Effect of Self Inhibitory Term.  The firing rate is 
shown as a solid line and the input drive is shown as a 

dashed line. The input weight is unity. The plot depicts the 
effect of three self-inhibitory feedback strengths. 
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Figure 3. Effect of drive force on a coupled set of neurons 
with mutual inhibition.  Six different levels of drive force 

are demonstrated. 
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Varying the mutual coupling term did result in a similar 

effect. However, we found that the mutual coupling 
parameter was very sensitive to variation. This would not be 
a desirable property in an engineered system. Due to space 
limitation, we do not present the results of those 
experiments here. 

D. Driving a motor neuron from the CPG 
Building on these results, the CPG can now be used to drive 
a motor neuron. We use inhibitory coupling between the 
CPG and the motor neuron. A tonic drive to the motor 
neuron, similar to the one used by the CPG, will activate it. 
Periodic inhibition from the CPG will then stop this activity. 
We can separately drive the motor neuron with a tonic 
input. The effect of changing this tonic input is illustrated in 
Figure 5. We vary the drive in three steps: 0.5 motorneuron 
drive t=[5,10), 1.0 motorneuron drive t=[10,15)  and 
motorneuron drive = 2 for t=[15,20). 

There are two key effects. The most evident is that 
increasing drive has the effect of increase the mean firing 
rate, as would be expected. The second effect is that 
increasing the drive causes the motor neuron to begin firing 
sooner, thus advancing the phase. By changing this drive, 
we will show that we can make changes to the phase 
relationship between joints in a robot walking machine 
sufficient to allow walking. 

 

E. Additional Results 
We also noted that when we drive the CPG network 

with a higher drive input, we create a higher firing rate for 
the CPG neuron. This has the consequence of inhibiting the 
Motor Neurons more. Thus it takes longer for them to start 
firing. This has the effect of retarding the phase relationship 
between the CPG neurons and the motor neurons. 

IV. Experiments in a Robot 

A. Robot Platform 
The robot platform used is the “RedBot” biped sold by 

AlegROBOT, Inc. of Urbana, Il, and is shown in Figure 6.   
The robot is made from lightweight plastic and uses high 
speed servo motors for actuation. It is capable of walking 
frequencies as high as 4-5 Hz.  
A network sufficient to control the robot, and constructed 
using the principles described above, is illustrated in Figure 
7. The four CPG neurons used allow us to allocate 2 
neurons to control the major movements of each hip joint. 
As the neurons have only positive firing rates, two neurons 
per joint are needed to specify backward and forward 
movement. In a system composed of two legs, with two 
neurons required per joint, a CPG network of a minimum of 
four neurons is necessary. 

We then use a Motor Neuron network to construct the 
proper commands for hips and knees. We note that this is 
not the only architecture. Others have suggested that there 
might be a chain of unit CPGs. One unit CPG might control 
the knee joint, one the hip joint etc. This has been suggested 
by Grillner [15] more than 20 years ago. We have found 
that this idea is not compatible with robot control. Another 
approach is to transition from the CPG-based approach to a 
more kinematic-based robot control scheme for 
specification of the knee and hip joints. We found that this 

Figure 5. Effect of changing the drive to the motor neuron and 
phase. The drive to the motor neuron changes both the phase 

and the amplitude of the driven motor neuron. 
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Figure 4. The effect of altering the self-inhibitory feedback term.

 
Figure 6. The “RedBot” robot mechanism used in the CPG 

experiments described here. The robot stands about 28 centimeters 
tall. 



was not necessary and creates an unnecessarily complex 
motor controller. 
 This is how the circuit works. The left and right halves 
of the network are about 180° out of phase. It is an 
approximate value and might depend to some degree on the 
exact parameters chosen. We assume that there is a 
distribution of weights and that all weights are not 
symmetric. Further, we assume a random distribution of 
state variables (the membrane voltages) when the system 
starts. These two conditions prevent the system from 
“locking up”, i.e., if the network were completely 
symmetric, the membrane voltages would all be increasing 
at the same rate and it would not be possible to achieve out 
of phase oscillations. 
 There are two neurons on each side of the CPG: 
neurons CPG0 and CPG1 constitute the right side of the 
network and CPG2 and CPG3 constitute the left side of the 
network. 
 All four of these neurons receive a tonic drive input. As 
noted before, this tonic drive can start and stop the network 
and control the amplitude of the CPG output. 
 CPG0 then inhibits the left hip extensor and the left 
knee extensor.  The phase relationship between the hip and 
the knee can be varied by providing the tonic drive input to 
the knee extensor. This tonic drive advances the phase of 
the knee versus the hip. 
 Likewise, CPG1 inhibits the flexors, and in this case 
also we can control the relationship between hip and knee 
by modulating the tonic drive. 
 It is also very important to note that this network gives 
us synergies for free. That is, the extensors tend to be 
activated together and the flexors are activated together. 
Thus, hip and knee are coordinated. 

 We have implemented this network on the Redbot and 
the robot can be made to trot at very fast speeds. 
 We varied the tonic drive to the knee flexor and 
extensor motor neurons as shown in Figure 8. In the 
condition labelled “A” the drive to the knee flexor was 3.0 
and the knee extensor was 6.0. In condition “B” the flexor 
drive was 6.0 and the extensor was 3.0. 

Thus, we see the change in the phase relationship 
between the hip and knee drive. 

B. Silicon CPG network implementation 
With reference to Figure 7, a CPG-based network, 
equivalent to one half of the network shown in the figure, 
was implemented in hardware using four Integrate-and-Fire 
(spiking) neurons of an aVLSI chip[8, 9].  The chip contains 
10 neurons each with 19 synapses. In particular, the neuron 
has one synapse that charges the membrane just as the tonic 
drive used in the previous sections, 8 synapses that allow 
altering of the neuron output through external circuitry, and 
finally each neuron has the capability of feeding back its 
output signal to itself and/or to all the other neurons on the 
chip. Furthermore, since each synapse can be set to be 
excitatory or inhibitory and each synaptic input can be 
easily weighted by modifying a synaptic weight table, it is 
possible to build sophisticated neural networks such as the 
one shown in figure 7. The network built here, therefore, 
consists of 2 CPG neurons and the equivalent of four motor 
neurons. The CPG neurons, just as the neurons described in 
the previous sections, are characterized by the self-
inhibitory synaptic connections upon themselves and the 
mutual inhibitory connections towards the antagonist CPG 
neuron. This allows the creation of alternating bursting 
activity between the two neurons. The situation is depicted 
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in Figure 9, where the hip extensor (HE) and flexor (HF) 
outputs behave identically to the two CPG neurons. To 
understand how this alternating activity is formed it is 
necessary to describe what happens inside each one of the 
two neurons. As the first bursting sequence displayed by the 
hip flexor in Figure 9 begins, the hip extensor is shut down 
due to the strong mutual inhibition signal coming from the 
flexor. At the same time, however, the self-inhibitory 
synapse progressively slows down the charging of the 
neuron’s membrane potential, thereby making it harder and 
harder for that neuron to spike. (With reference to Figure 9, 
this phenomenon is more readily seen at the end of the hip 
extensor’s first and third bursting patterns). At a certain 
point, the tonic input which drives the extensor overcomes 
the inhibition coming from the flexor and allows the 
extensor neuron’s membrane potential to start charging. 
When it finally reaches threshold, a new mutual inhibition 
term from the extensor is added to the large self-inhibition 
value that the flexor neuron had accumulated to bring the 
flexor neuron’s membrane potential low. Then the self-
inhibition of the extensor starts to grow until the flexor can 
spike again and the process starts anew. 

 Depending on the weight set on the tonic input to 
the knee flexor or extensor we can then modulate the time-
lag between the beginning of the firing of its respective hip 
signal and the beginning of its own firing. This means that 
with a strong weight, the two signals will begin the bursting 
at the same time (or, if the weight is particularly strong, then 
the knee signal can actually precede to some extent its 
respective hip signal), whereas if it is weak, the knee 
bursting will start late with respect to the hip signal. To 
attain a proper walking motion, the knee and hip extensors 
have to be 90° out-of-phase of each other, as do the knee 
and hip flexors. This situation is depicted in figure 9, where 
the time-lag between the various signals can easily be seen 
if the figure is viewed from the hip flexor signal towards the 
knee extensor signal: it is easy to see that each signal is 
+90° out-of phase with respect to the next one. 
 

 

V. Summary and Conclusions 
 We first described a multi-compartmental model of a 
neuron with self-inhibitory feedback. We showed that by 
intra and inter inhibitor connections, an oscillator circuit 
could be built. In addition, we showed that increased self-
inhibition leads to increased oscillation rate and that an 
increased tonic drive leads to a greater firing rate for the 
CPG neurons but little or no change in the burst frequency. 
We found that a four neuron network could be made to 
drive eight motor neurons and generate locomotor patterns 
necessary for bipedal trotting. Further, we found that by 
adjustment of tonic input to the motor neuron network, we 
could adjust the phase relationship between motor neurons 
driving the hip and motor neurons driving the knee.  
 We demonstrated that the same network architecture 
that worked in a mean firing rate simulation model was also 
valid in a silicon spiking neuron chip. We showed results in 
a real bipedal robot. 

We found that our network creates synergies naturally, 
and that the coordination between joints is achieved without 
the need for a chain of oscillators as suggested by Grillner. 
 The network generated here relies heavily on inhibition 
in order to work. Indeed, the only excitation found in the 
network is the tonic excitatory drives. We found the 
network to behave very well: most of the parameters of the 
network could be varied over a wide range of parameters 
and the network would still exhibit a well controlled 
behaviour. We feel confident, because of this robustness to 
parameter variation, that our network will be easily 
implemented in a custom aVLSI chip. 
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